

Measuring Circularity

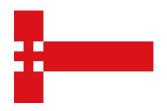
The Gordian Knot of the 21st century

Arjen Wierikx January 25, 2023

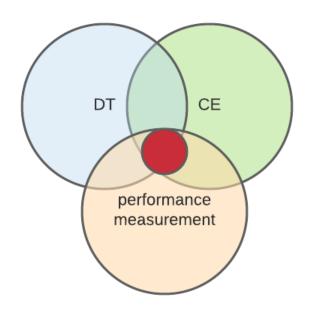
Agenda

- Introduction
- The circular challenge
- State of art
- Design principles
- Prototype
- Invitation

Passion For Logistics Allergic To Waste



www.slimcirculair.info



Research question

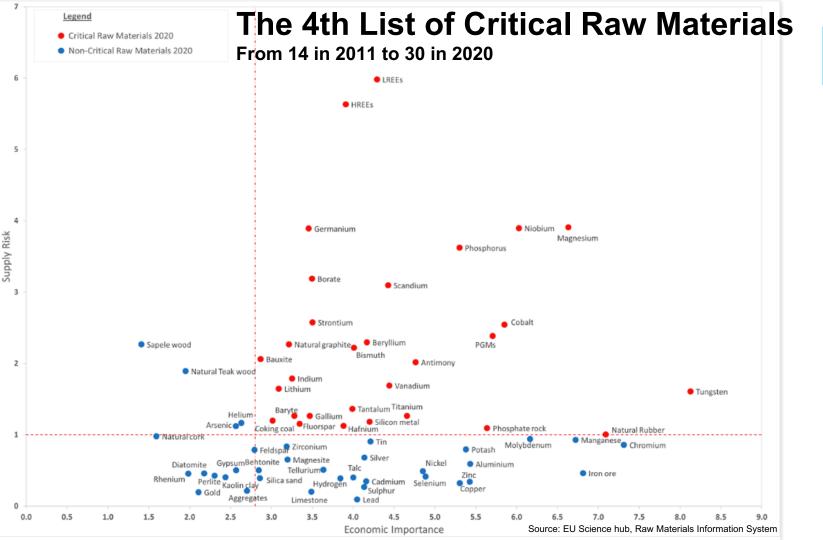
How can organizations use Digital Technology strategies to increase Circular Economy performance?

Broken down into:

- 1. How do we measure CE performance on a micro level?
- 2. How to determine DT strategies?
- 3. Impact of DT strategies on CE performance

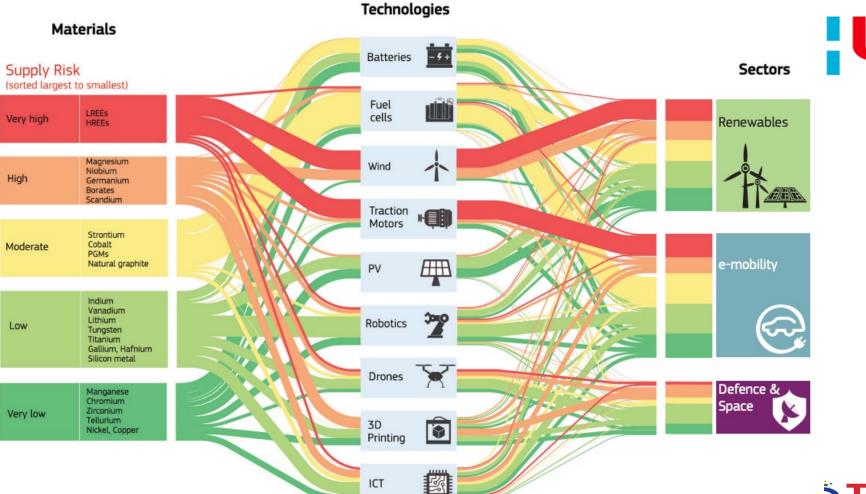
SER: Make Raw Materials transition a priority

September 16, 2022:


SER (social economic board) exploration: Climate targets will not be achieved without accelerating the raw materials transition

"High-quality reuse of raw materials and materials, high-quality use of bio-based raw materials and making international chains more sustainable are necessary conditions for both transitions. Cohesive policy is therefore crucial."

Ed Nijpels, chairman SER-commission Sustainable Development


- Energy transition and Raw materials transition are at odds;
- With CO2 we can make the energy transition measurable. What about the raw materials transition / circularity?

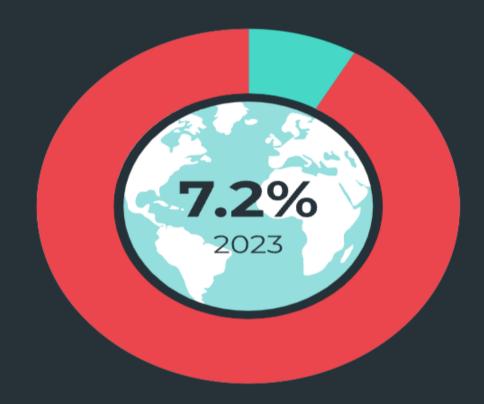
Source: https://rmis.jrc.ec.europa.eu/uploads/CRMs for Strategic Technologies and Sectors in the EU 2020.pdf

Where we are?

Governments worldwide are announcing that they want to be 100% circular by 2050 (EC, 2011).

Euhh, that is 27 (!!) years from now.

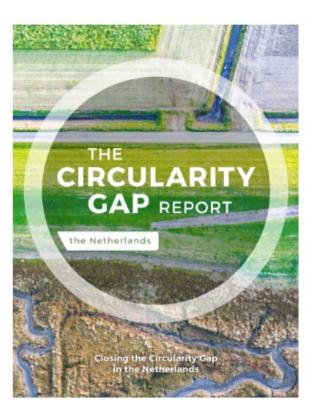
①


The Naked Truth.....

THE GLOBAL ECONOMY IS NOW ONLY 7.2% CIRCULAR

The global situation is getting worse year on year—driven by rising material extraction and use.

Rising material extraction has shrunk global circularity: from 9.1% in 2018, to 8.6% 2020, and now 7.2% in 2023. This leaves a huge Circularity Gap: the globe almost exclusively relies on new (virgin) materials.


This means that more than 90% of materials are either wasted, lost or remain unavailable for reuse for years as they are locked into long-lasting stock such as buildings and machinery.

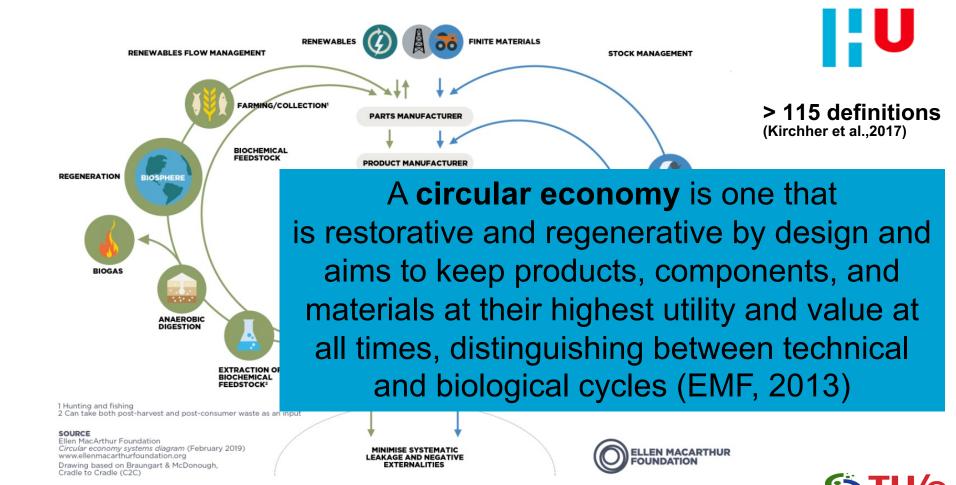
Materials that are cycled back into the global economy after the end of their useful life, otherwise known as secondary materials, account for 7.2% of all material inputs into the economy—this is the Circularity Metric.

A little better for the Netherlands

The Netherlands is a global frontrunner in the race to circularity with a Circularity Metric of 24.5%. However, the government has ambitious goals: an economy that is 50% or cular by 2030 and 100% or cular by 2050. The Circularity Gap Report, the Netherlands, recommends wide-ranging ways in which the economy can pivot away from its linear habits across four key sectors: agriculture, construction, manufacturing and energy. The suggested strategies could triple the Dutch metric from 24.5% to 70%.

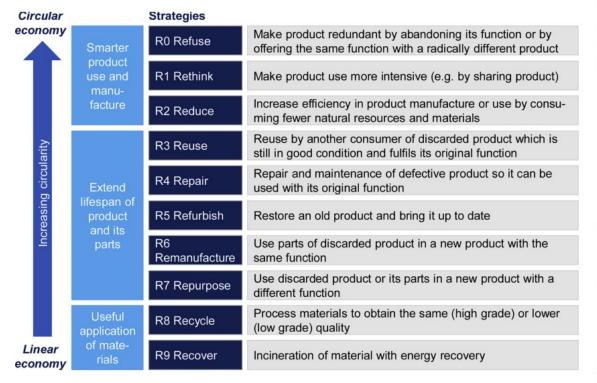
Explore the full report

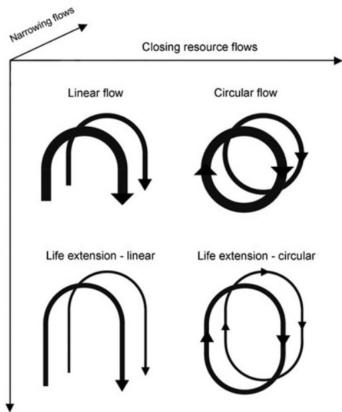
https://www.circularity-gap.world/countries



How circular are you / is your organization?

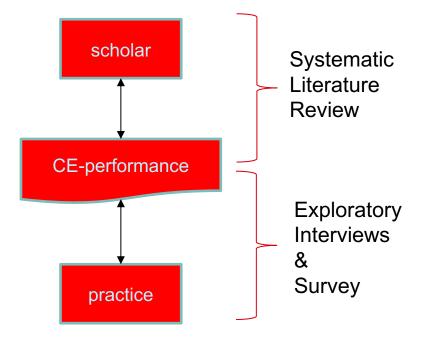
- **0**-5%
- **5-10%**
- **1**0-15%
- **□** 15-25%
- **25-50%**
- **25-75**%
- **J** 75-100%



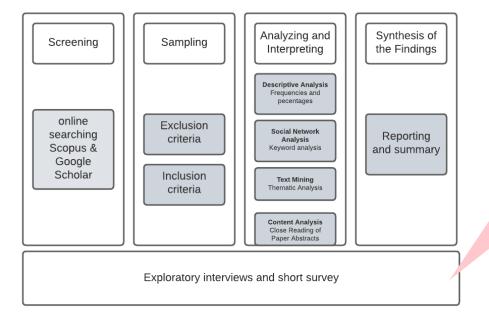

Strategies

R-strategies / narrowing, slowing, closing

o.a. Potting et al. (2017) and Bocken et al. (2016)



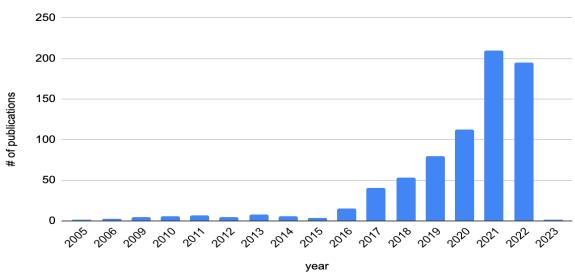
Exploring Circular Performance Current State of art



SLR & Exploratory interviews/survey

Systematic Literature Review following Denyer & Tranfield (2009)

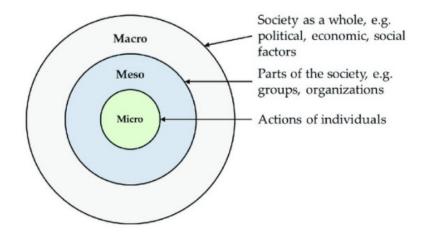
- 10 interviews (manufacturers, wholesale)
- Survey (http://www.slimcirculair.info/1126611 circulariteit-meetbaar-maken)



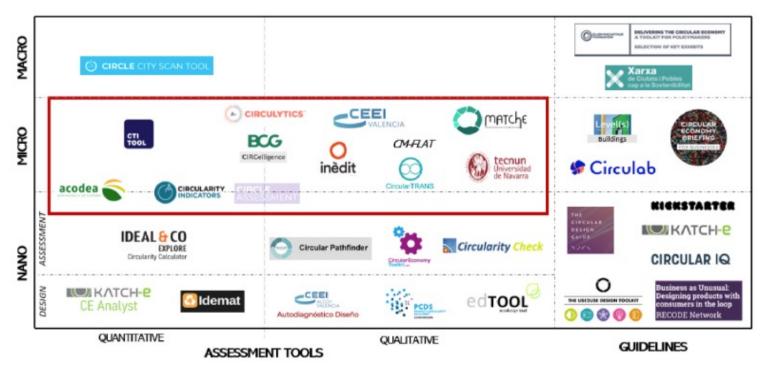
Publication explosion..

751 and counting

Publications on CE & Performance

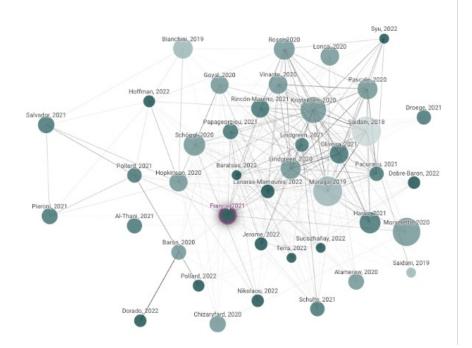


Source: constructed by authors



Macro, meso and micro level overview (Javaid, Javed & Kohda, 2019)

Snapshot (semi) commercially available tools



Existing tools for the assessment of the circular economy (Valls-Val et al., 2022)

Findings

Reference	Approaches	Characteristic
(Valls-Val et al., 2022)	12	Tools capable of measuring the level of circularity of organisations.
(Vinante et al., 2021)		Focus on 365 different firm level metrics, classified in 23 categories.
(Kravchenko et al., 2020)		Review and ex-ante classification of sustainability performance indicators for proactive CE-strategies assessment
(Kristensen & Mosgaard, 2020)	30	Focus on micro level, zooming in on 'CE categories' and connection to Sustainable Development (SD) dimensions. Less attention for implementation perspective. Also includes grey literature.
(Lindgreen et al., 2020)	74	Newly constructed review framework, applying four review perspectives: A general, descriptive (methodological), normative (inclusion of SD/CE dimensions), and prescriptive (implementation-focused perspective.
(Corona et al., 2019)	72	Zooms in on 'validity', 'reliability', and 'utility of metrics, and connection to existing method ologies (Life Cycle Assessment (LCA)/Materia Flow Analysis (MFA), no focus on micro level.
(Moraga et al., 2019)	20	Introduces classification framework for CE indicators, both on macro- as well as micro level. Addresses different CE strategies captured by indicators.
(Parchomenko et al., 2019)	63	Applies Multiple Correspondence Analysis (MCA) to assess metrics. No distinction between different levels of assessment.
(Michael Saidani et al., 2019)	55	Proposes intricate taxonomy of indicators, applying 10 differentiation categories.
(Sassanelli et al., 2019)	45	Collects and reviews CE-performance assessment methods. Primary focus on methodological foundation. No specification of level of assessment.
(Elia et al., 2017)		Review, analyses, and comparison on how environmental assessment methodologies based on quantitative indicators are effective in measuring CE- strategies' level of application in companies, products and services.

- 11 meta studies
- Reference set of 731 papers

- 125(!) models to make CE measurable
- 365 (!) micro level parameters

The Gordian knot

- Scientific transparency is lacking (Valls-Val et al., 2022);
- Varying substantiation (Sacco et al., 2021);
- Focus on in-& outflow / LCA & MFA;
- Inconsistent in purpose, scope and application (Saidani et al., 2019);
- Lack of standardization (Vinante et al., 2020; Kristensen et al., 2020);
- Terminology not formalized (Baratsas et al., 2022);
- Confusion and ambiguity (Vinante et al., 2020; Fiksel et al., 2012)

Some results of the survey Significant visibility, response not yet representative

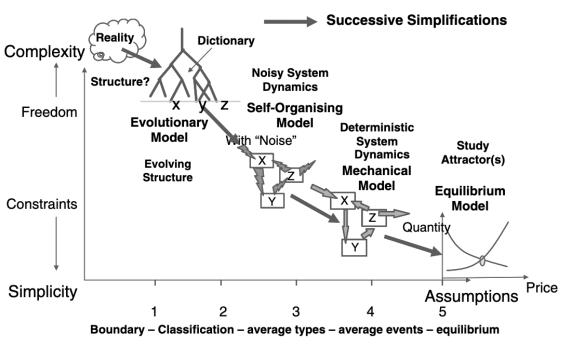
- 75% of respondents is NOT measuring circularity (lack of expertise and or tooling (90%))
- Measuring circularity should be done once a year (62,5%) by top management (37,5%) or external consultants (37,5%)
- Strong desire to link current performance with growth scenario's (87,5%)
- Max time to complete circular maturity scan: 1 hour
- Circular quality label?: (50/50)

Interviews confirm the picture

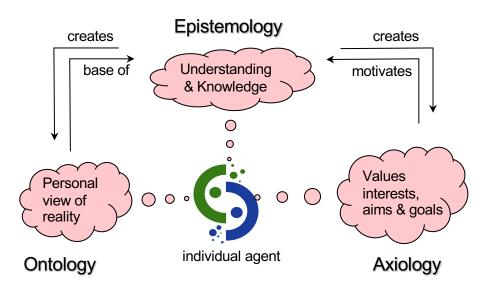
- "We use CO2 because other units of measurement are not clear";
- "Circular turnover is reported annually, based on four indicators that we measure company-wide";
- "I have no idea how to measure, I had hoped that you would come and tell me";
- "We really want to measure circular performance, but we feel enormously hampered by regulations, laws and OEMs";
- "If my customers want this, I will pay attention to it";
- "For a small part of the business, we use a simplified version of the CTI Tool";
- "We separate waste"....

Hypothesis

There is not yet a really good tool for making circular performance holistically measurable that can also be used in SMEs in the Netherlands.

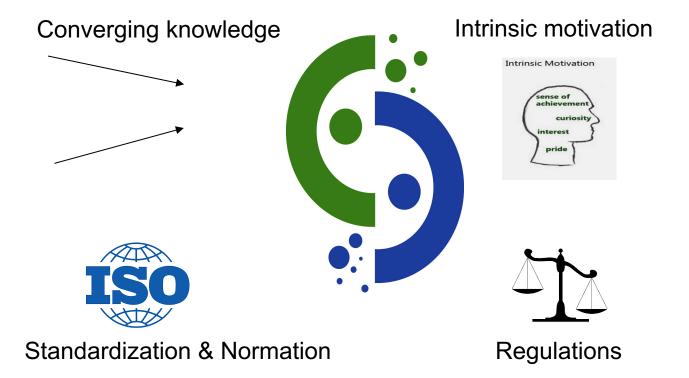

Co-evolution / complexity science the one influences the other

A co-evolutionary perspective on the Circular Economy



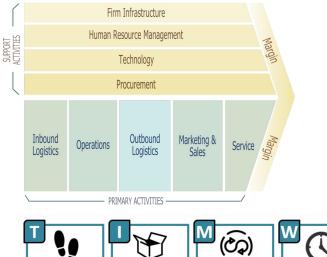
Source: Allen, P. M., & Varga, L. (2006)

Co-evolutionary development of CE



Source: created by Walraven, P. (2022) based on Allen, P. M., & Varga, L. (2006) and adjusted by author.

We are getting there



Holistic ambitions

based on R-ladder, Porter & Lean

Doing more work than

necessary

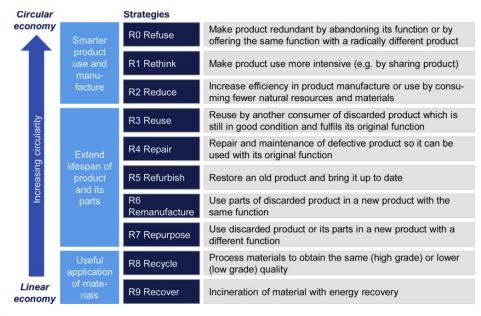
INVENTORY

Items or information that

customer has not received

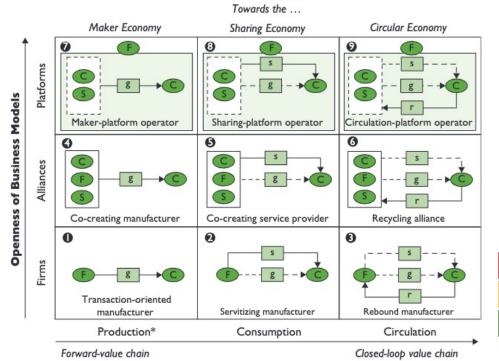
MOTION

Excessive movement


within workspace

WAITING

Waiting for information

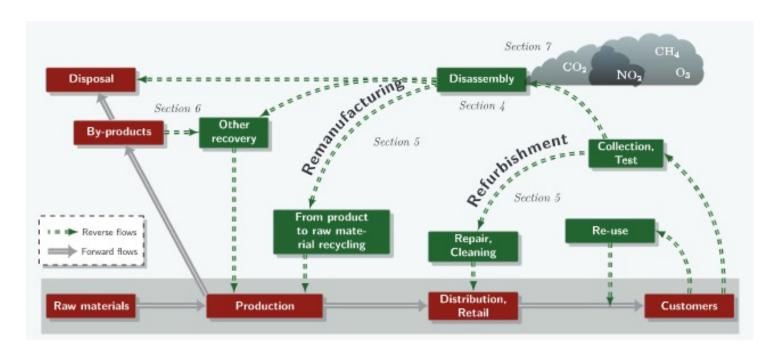

or items to arrive

New initiatives... Eliminating leaks.. Thinking differently...

C Consumer F Focal firm

S Supplier

g goods s value added services r re-acquired products



Integration along the Product Life-Cycle

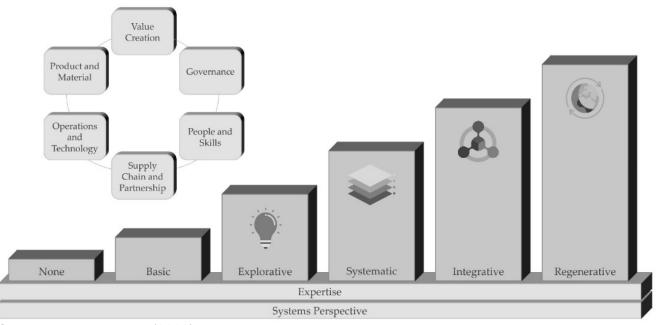
STU/e

New entities in new networks

Source: Suzanne et al. (2020)

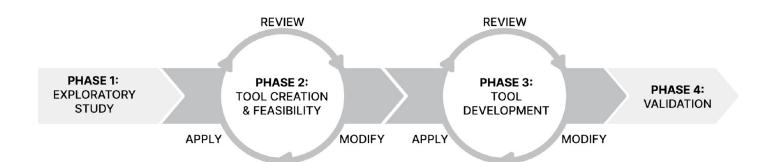
The challenge

U


holistic, dynamic, accessible and longitudinal

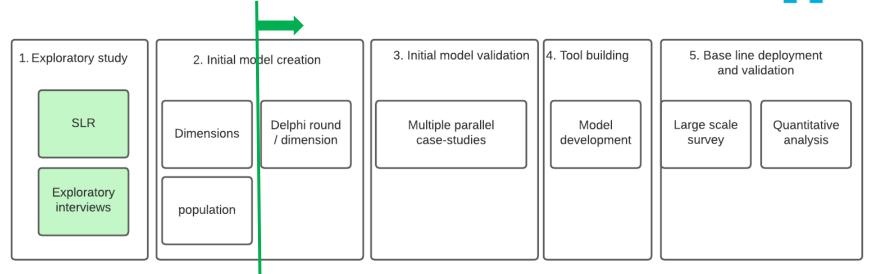
- Holistic: Circular performance is more than just a focus on material flows.
- □ **Dynamic:** Domain is in constant motion, capabilities can (will) change over time;
- □ Accessible: Attractive. Feeling invited to participate to increase response;
- Longitidunal: Being able to make visible what to do to develop to the next level based on a benchmark.

Circular performance Viewed through the lens of process maturity


Source Uhrenholt et al. (2022)

Model creation methodology

following Moultrie et al. (2007)
DSR as underlying perspective (Cross, 2001; Hevner et al., 2004)



Our model

Based on Moultrie et al. (2007)

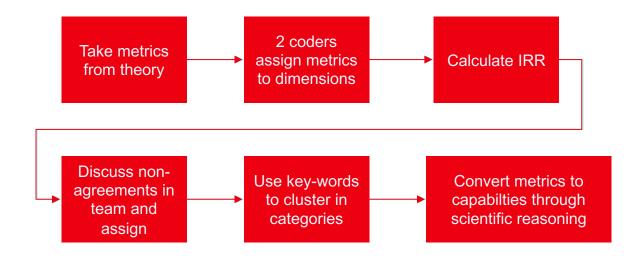
Experiments:

- Capability identification with reps. from 5 companies in Delphi workshop
- Prototype Circular Maturity Model based on literature

Model creation methodology dimension selection

 strategy, products/services, technology, people and culture, management processes 	Strategy & policy Management & control Organization & process People & culture Information technology	 Strategy Leadership Customers Product Operations Culture People Governance Technology 	 Value creation Governance People & Skills Supply Chain & Partnership Operations & Technology Product & Material 	 Economic Environmental Social Policy Process Product Strategy Technology
Williams et al., 2019	Paavel et al., 2017	Mittal et al., 2018	Uhrenholt et al., 2022	Kayikci et al., 2022

Dimension selection


- 1. Strategy
- 2. People
- 3. Product
- 4. Process
- 5. Technology
- 6. Environmental

Model creation methodology capability identification

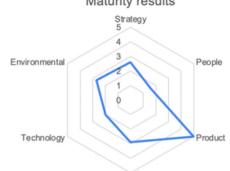
Rosemann

Steenbergen et al, 2013; Cleven et al., 2012; Poeppelbuss et al., 2011; Mettler et al., 2010 / 2011; Scott, 2007; Rosemann and De Bruin, 2005

Prototype

Astrid van den Berg, Brent Rietveld, Jop de Winter

Strategy	People	Product	Process	Technology	Environmental
capability	capability	capability	capability	capability	capability
capability	capability	capability	capability	capability	capability
capability	capability	capability	capability	capability	capability
capability	capability	capability	capability	capability	capability
capability	capability	capability	capability	capability	capability
capability	capability	capability	capability	capability	capability
capability	capability	capability	capability	capability	capability
capability	capability	capability	capability	capability	capability
capability	capability	capability	capability	capability	capability
capability	capability	capability	capability	capability	capability



Likert, 1932

None	There is no circular awareness, elements of circular economy in	
	strategies or related activities in the organization.	
Basis	The organization appears to have a need for CE, and there are	
	discussions about how and where to act.	
Exploratory	Demonstration projects and pilots are being started within the	
	various functions in the organization. This allows the value of a	
	CE to be proven and organizational capabilities to be tested.	
Systematic	Means for pursuing a CE are implemented throughout the	
	organization. Successful pilots are also being carried out, after	
	which scaling up is started.	
Integration	Circular initiatives and ambitions are aligned throughout the	
	organization and critical supply chain.	
Regenerative	The organization is really engaged in CE and is regenerative and	
	restorative by design.	

Uhrenholt et al., 2022

Maturity results

Process

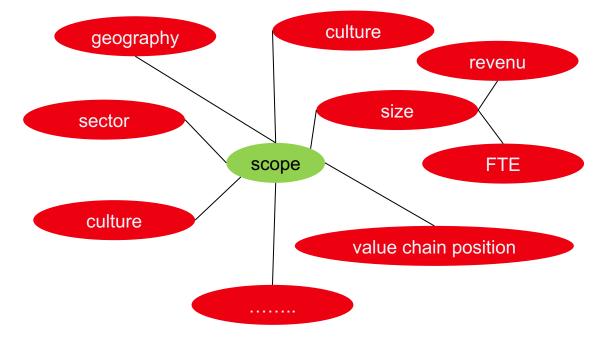
https://www.slimcirculair.info/1170474 prototypecircular-performance-maturity-model

Next steps – invitation to participate

3. Initial model validation 4. Tool building 5. Base line deployment 1. Exploratory study 2. Initial model creation and validation SLR Delphi round Multiple parallel Model Large scale Quantitative **Dimensions** / dimension case-studies development survey analysis Exploratory interviews population

Model creation methodology Delphi-rounds

U


- For each dimension
- Expert panel of industry representatives, scientists and consultants
- Using meeting-wizard
- Capability recognition
- Giving meaning to capabilities
- Capabilities (add, change, delete)

Multiple case studies

- Scope
- Case selection
- Case study protocol

Hypothesis

Circular performance, viewed through the lens of maturity will not only give me insight into where I stand today but also, through benchmarking, offers me directions on how to grow tomorrow.

Invitation to participate

Survey: Current Circular Measuring Regime (in Dutch only)	https://www.slimcirculair.info/1126611_circulariteit- meetbaar-maken
Prototype Circular Performance Maturity Model (in English)	https://www.slimcirculair.info/1170474_prototype-circular-performance-maturity-model
Capability validation in (on-line) Delphi session	mailto: arjen.wierikx@hu.nl
Model validation in (in depth) case study	mailto: arjen.wierikx@hu.nl

Are you participating and/or do you have any questions?

www.slimcirculair.info arjen.wierikx@hu.nl

